Tap the blue circles to see an explanation.
| $$ \begin{aligned}(-11+9i)\cdot(-8+10i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}88-110i-72i+90i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}90i^2-182i+88\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{-11+9i}\right) $ by each term in $ \left( -8+10i\right) $. $$ \left( \color{blue}{-11+9i}\right) \cdot \left( -8+10i\right) = 88-110i-72i+90i^2 $$ |
| ② | Combine like terms: $$ 88 \color{blue}{-110i} \color{blue}{-72i} +90i^2 = 90i^2 \color{blue}{-182i} +88 $$ |