Tap the blue circles to see an explanation.
| $$ \begin{aligned}(-11-10i)\cdot(-11-10i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}121+110i+110i+100i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}100i^2+220i+121\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{-11-10i}\right) $ by each term in $ \left( -11-10i\right) $. $$ \left( \color{blue}{-11-10i}\right) \cdot \left( -11-10i\right) = 121+110i+110i+100i^2 $$ |
| ② | Combine like terms: $$ 121+ \color{blue}{110i} + \color{blue}{110i} +100i^2 = 100i^2+ \color{blue}{220i} +121 $$ |