Tap the blue circles to see an explanation.
| $$ \begin{aligned}(-10+4i)\cdot(3-2i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-30+20i+12i-8i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-8i^2+32i-30\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{-10+4i}\right) $ by each term in $ \left( 3-2i\right) $. $$ \left( \color{blue}{-10+4i}\right) \cdot \left( 3-2i\right) = -30+20i+12i-8i^2 $$ |
| ② | Combine like terms: $$ -30+ \color{blue}{20i} + \color{blue}{12i} -8i^2 = -8i^2+ \color{blue}{32i} -30 $$ |