Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\frac{x+2}{4}-\frac{2}{3}}{x+2}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\frac{3x-2}{12}}{x+2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{3x-2}{12x+24}\end{aligned} $$ | |
| ① | Subtract $ \dfrac{2}{3} $ from $ \dfrac{x+2}{4} $ to get $ \dfrac{ \color{purple}{ 3x-2 } }{ 12 }$. To subtract raitonal expressions, both fractions must have the same denominator. |
| ② | Divide $ \dfrac{3x-2}{12} $ by $ x+2 $ to get $ \dfrac{ 3x-2 }{ 12x+24 } $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{3x-2}{12} }{x+2} & \xlongequal{\text{Step 1}} \frac{3x-2}{12} \cdot \frac{\color{blue}{1}}{\color{blue}{x+2}} \xlongequal{\text{Step 2}} \frac{ \left( 3x-2 \right) \cdot 1 }{ 12 \cdot \left( x+2 \right) } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 3x-2 }{ 12x+24 } \end{aligned} $$ |