Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\frac{m}{2}+\frac{2}{5}}{\frac{4}{5}+\frac{4}{25}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{\frac{5m+4}{10}}{\frac{24}{25}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{125m+100}{240}\end{aligned} $$ | |
| ① | Add $ \dfrac{m}{2} $ and $ \dfrac{2}{5} $ to get $ \dfrac{ \color{purple}{ 5m+4 } }{ 10 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ② | Add $ \dfrac{4}{5} $ and $ \dfrac{4}{25} $ to get $ \dfrac{ \color{purple}{ 24 } }{ 25 }$. To add fractions they must have the same denominator. |
| ③ | Divide $ \dfrac{5m+4}{10} $ by $ \dfrac{24}{25} $ to get $ \dfrac{ 125m+100 }{ 240 } $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{5m+4}{10} }{ \frac{\color{blue}{24}}{\color{blue}{25}} } & \xlongequal{\text{Step 1}} \frac{5m+4}{10} \cdot \frac{\color{blue}{25}}{\color{blue}{24}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ \left( 5m+4 \right) \cdot 25 }{ 10 \cdot 24 } \xlongequal{\text{Step 3}} \frac{ 125m+100 }{ 240 } \end{aligned} $$ |