Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{(5j+59)(-j+7)}{50}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{-5j^2+35j-59j+413}{50} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-5j^2-24j+413}{50}\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{5j+59}\right) $ by each term in $ \left( -j+7\right) $. $$ \left( \color{blue}{5j+59}\right) \cdot \left( -j+7\right) = -5j^2+35j-59j+413 $$ |
| ② | Simplify numerator $$ -5j^2+ \color{blue}{35j} \color{blue}{-59j} +413 = -5j^2 \color{blue}{-24j} +413 $$ |