Tap the blue circles to see an explanation.
| $$ \begin{aligned}(2 \cdot \frac{x}{z+1}+\frac{x^2}{x^2-1})\frac{1-x}{x^3}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(\frac{2x}{z+1}+\frac{x^2}{x^2-1})\frac{1-x}{x^3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2x^3+x^2z+x^2-2x}{x^2z+x^2-z-1}\frac{1-x}{x^3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-2x^4-x^3z+x^3+x^2z+3x^2-2x}{x^5z+x^5-x^3z-x^3} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{-2x^3-x^2z+x^2+xz+3x-2}{x^4z+x^4-x^2z-x^2}\end{aligned} $$ | |
| ① | Multiply $2$ by $ \dfrac{x}{z+1} $ to get $ \dfrac{ 2x }{ z+1 } $. Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 2 \cdot \frac{x}{z+1} & \xlongequal{\text{Step 1}} \frac{2}{\color{red}{1}} \cdot \frac{x}{z+1} \xlongequal{\text{Step 2}} \frac{ 2 \cdot x }{ 1 \cdot \left( z+1 \right) } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2x }{ z+1 } \end{aligned} $$ |
| ② | Add $ \dfrac{2x}{z+1} $ and $ \dfrac{x^2}{x^2-1} $ to get $ \dfrac{ \color{purple}{ 2x^3+x^2z+x^2-2x } }{ x^2z+x^2-z-1 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ③ | Multiply $ \dfrac{2x^3+x^2z+x^2-2x}{x^2z+x^2-z-1} $ by $ \dfrac{1-x}{x^3} $ to get $ \dfrac{-2x^4-x^3z+x^3+x^2z+3x^2-2x}{x^5z+x^5-x^3z-x^3} $. Step 1: Multiply numerators and denominators. Step 2: Simplify numerator and denominator. $$ \begin{aligned} \frac{2x^3+x^2z+x^2-2x}{x^2z+x^2-z-1} \cdot \frac{1-x}{x^3} & \xlongequal{\text{Step 1}} \frac{ \left( 2x^3+x^2z+x^2-2x \right) \cdot \left( 1-x \right) }{ \left( x^2z+x^2-z-1 \right) \cdot x^3 } = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 2x^3-2x^4+x^2z-x^3z+x^2-x^3-2x+2x^2 }{ x^5z+x^5-x^3z-x^3 } = \frac{-2x^4-x^3z+x^3+x^2z+3x^2-2x}{x^5z+x^5-x^3z-x^3} \end{aligned} $$ |