Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{2-4i}{2+i}+\frac{1+i}{1-3i}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-2i+\frac{-1+2i}{5} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-8i-1}{5}\end{aligned} $$ | |
| ① | Divide $ \, 2-4i \, $ by $ \, 2+i \, $ to get $\,\, -2i $. ( view steps )Divide $ \, 1+i \, $ by $ \, 1-3i \, $ to get $\,\, \dfrac{-1+2i}{5} $. ( view steps ) |
| ② | Add $-2i$ and $ \dfrac{-1+2i}{5} $ to get $ \dfrac{ \color{purple}{ -8i-1 } }{ 5 }$. Step 1: Write $ -2i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |