Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{(2+3i)\cdot(1-2i)}{1-4i}+\frac{4+i}{2+3i}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{(2+3i)\cdot(1-2i)}{1-4i}+\frac{11-10i}{13} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2-4i+3i-6i^2}{1-4i}+\frac{11-10i}{13} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-6i^2-i+2}{1-4i}+\frac{11-10i}{13} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{6-i+2}{1-4i}+\frac{11-10i}{13} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{-i+8}{1-4i}+\frac{11-10i}{13} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{12+31i}{17}+\frac{11-10i}{13} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}\frac{233i+343}{221}\end{aligned} $$ | |
| ① | Divide $ \, 4+i \, $ by $ \, 2+3i \, $ to get $\,\, \dfrac{11-10i}{13} $. ( view steps ) |
| ② | Multiply each term of $ \left( \color{blue}{2+3i}\right) $ by each term in $ \left( 1-2i\right) $. $$ \left( \color{blue}{2+3i}\right) \cdot \left( 1-2i\right) = 2-4i+3i-6i^2 $$ |
| ③ | Combine like terms: $$ 2 \color{blue}{-4i} + \color{blue}{3i} -6i^2 = -6i^2 \color{blue}{-i} +2 $$ |
| ④ | $$ -6i^2 = -6 \cdot (-1) = 6 $$ |
| ⑤ | Combine like terms: $$ \color{blue}{6} -i+ \color{blue}{2} = -i+ \color{blue}{8} $$ |
| ⑥ | Divide $ \, 8-i \, $ by $ \, 1-4i \, $ to get $\,\, \dfrac{12+31i}{17} $. ( view steps ) |
| ⑦ | Add $ \dfrac{12+31i}{17} $ and $ \dfrac{11-10i}{13} $ to get $ \dfrac{ \color{purple}{ 233i+343 } }{ 221 }$. To add raitonal expressions, both fractions must have the same denominator. |