Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\frac{\frac{2}{x}+\frac{2}{x^2}}{1}}{x}-x& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\frac{\frac{2x^2+2x}{x^3}}{1}}{x}-x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{\frac{2x^2+2x}{x^3}}{x}-x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{2x^2+2x}{x^4}-x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{-x^5+2x^2+2x}{x^4}\end{aligned} $$ | |
| ① | Add $ \dfrac{2}{x} $ and $ \dfrac{2}{x^2} $ to get $ \dfrac{ \color{purple}{ 2x^2+2x } }{ x^3 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ② | Divide $ \dfrac{2x^2+2x}{x^3} $ by $ 1 $ to get $ \dfrac{ 2x^2+2x }{ x^3 } $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{2x^2+2x}{x^3} }{1} & \xlongequal{\text{Step 1}} \frac{2x^2+2x}{x^3} \cdot \frac{\color{blue}{1}}{\color{blue}{1}} \xlongequal{\text{Step 2}} \frac{ \left( 2x^2+2x \right) \cdot 1 }{ x^3 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2x^2+2x }{ x^3 } \end{aligned} $$ |
| ③ | Divide $ \dfrac{2x^2+2x}{x^3} $ by $ x $ to get $ \dfrac{ 2x^2+2x }{ x^4 } $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{2x^2+2x}{x^3} }{x} & \xlongequal{\text{Step 1}} \frac{2x^2+2x}{x^3} \cdot \frac{\color{blue}{1}}{\color{blue}{x}} \xlongequal{\text{Step 2}} \frac{ \left( 2x^2+2x \right) \cdot 1 }{ x^3 \cdot x } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2x^2+2x }{ x^4 } \end{aligned} $$ |
| ④ | Subtract $x$ from $ \dfrac{2x^2+2x}{x^4} $ to get $ \dfrac{ \color{purple}{ -x^5+2x^2+2x } }{ x^4 }$. Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |