Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\frac{1+sqrt\cdot3i}{2}}{\frac{1+sqrt\cdot3i}{2}-1}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\frac{1+sqrt\cdot3i}{2}}{\frac{3iqrst-1}{2}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{3iqrst+1}{3iqrst-1}\end{aligned} $$ | |
| ① | Subtract $1$ from $ \dfrac{1+3iqrst}{2} $ to get $ \dfrac{ \color{purple}{ 3iqrst-1 } }{ 2 }$. Step 1: Write $ 1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ② | Divide $ \dfrac{1+3iqrst}{2} $ by $ \dfrac{3iqrst-1}{2} $ to get $ \dfrac{3iqrst+1}{3iqrst-1} $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Cancel $ \color{red}{ 2 } $ in first and second fraction. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{1+3iqrst}{2} }{ \frac{\color{blue}{3iqrst-1}}{\color{blue}{2}} } & \xlongequal{\text{Step 1}} \frac{1+3iqrst}{2} \cdot \frac{\color{blue}{2}}{\color{blue}{3iqrst-1}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{1+3iqrst}{\color{red}{1}} \cdot \frac{\color{red}{1}}{3iqrst-1} \xlongequal{\text{Step 3}} \frac{ \left( 1+3iqrst \right) \cdot 1 }{ 1 \cdot \left( 3iqrst-1 \right) } = \\[1ex] & \xlongequal{\text{Step 4}} \frac{ 1+3iqrst }{ 3iqrst-1 } = \frac{3iqrst+1}{3iqrst-1} \end{aligned} $$ |