Tap the blue circles to see an explanation.
| $$ \begin{aligned}(1+10)^{10}\frac{(3^{1/2}-i)^5}{(1-i\cdot3^{1/2})^{10}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}11^{10}\frac{(3^{1/2}-i)^5}{(1-i\cdot3^{1/2})^{10}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}25937424601 \cdot \frac{(3^{1/2}-i)^5}{(1-i\cdot3^{1/2})^{10}}\end{aligned} $$ | |
| ① | Combine like terms: $$ \color{blue}{1} + \color{blue}{10} = \color{blue}{11} $$ |
| ② | 1+10=11 |