Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\frac{17}{8}ipi^2+\frac{27}{8}ipi^3}{2}+2i& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{\frac{17i}{8}pi^2+\frac{27i}{8}pi^3}{2}+2i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{\frac{17ip}{8}i^2+\frac{27ip}{8}i^3}{2}+2i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{\frac{17ip}{8}\cdot(-1)+\frac{27ip}{8}\cdot-i}{2}+2i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}\frac{-\frac{17ip}{8}+(-\frac{27i^2p}{8})}{2}+2i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle9}{\textcircled {9}} } }}}\frac{\frac{-27i^2p-17ip}{8}}{2}+2i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle10}{\textcircled {10}} } }}}\frac{-27i^2p-17ip}{16}+2i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle11}{\textcircled {11}} } }}}\frac{-27i^2p-17ip+32i}{16}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{17}{8} $ by $ i $ to get $ \dfrac{ 17i }{ 8 } $. Step 1: Write $ i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{17}{8} \cdot i & \xlongequal{\text{Step 1}} \frac{17}{8} \cdot \frac{i}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 17 \cdot i }{ 8 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 17i }{ 8 } \end{aligned} $$ |
| ② | Multiply $ \dfrac{27}{8} $ by $ i $ to get $ \dfrac{ 27i }{ 8 } $. Step 1: Write $ i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{27}{8} \cdot i & \xlongequal{\text{Step 1}} \frac{27}{8} \cdot \frac{i}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 27 \cdot i }{ 8 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 27i }{ 8 } \end{aligned} $$ |
| ③ | Multiply $ \dfrac{17i}{8} $ by $ p $ to get $ \dfrac{ 17ip }{ 8 } $. Step 1: Write $ p $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{17i}{8} \cdot p & \xlongequal{\text{Step 1}} \frac{17i}{8} \cdot \frac{p}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 17i \cdot p }{ 8 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 17ip }{ 8 } \end{aligned} $$ |
| ④ | Multiply $ \dfrac{27i}{8} $ by $ p $ to get $ \dfrac{ 27ip }{ 8 } $. Step 1: Write $ p $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{27i}{8} \cdot p & \xlongequal{\text{Step 1}} \frac{27i}{8} \cdot \frac{p}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 27i \cdot p }{ 8 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 27ip }{ 8 } \end{aligned} $$ |
| ⑤ | $$ i^2 = -1 $$ |
| ⑥ | $$ i^3 = \color{blue}{i^2} \cdot i =
( \color{blue}{-1}) \cdot i =
- \, i $$ |
| ⑦ | Multiply $ \dfrac{17ip}{8} $ by $ -1 $ to get $ \dfrac{ -17ip }{ 8 } $. Step 1: Write $ -1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{17ip}{8} \cdot -1 & \xlongequal{\text{Step 1}} \frac{17ip}{8} \cdot \frac{-1}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 17ip \cdot \left( -1 \right) }{ 8 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ -17ip }{ 8 } \end{aligned} $$ |
| ⑧ | Multiply $ \dfrac{27ip}{8} $ by $ -i $ to get $ \dfrac{ -27i^2p }{ 8 } $. Step 1: Write $ -i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{27ip}{8} \cdot -i & \xlongequal{\text{Step 1}} \frac{27ip}{8} \cdot \frac{-i}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 27ip \cdot \left( -i \right) }{ 8 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ -27i^2p }{ 8 } \end{aligned} $$ |
| ⑨ | Add $ \dfrac{-17ip}{8} $ and $ \dfrac{-27i^2p}{8} $ to get $ \dfrac{-27i^2p-17ip}{8} $. To add expressions with the same denominators, we add the numerators and write the result over the common denominator. $$ \begin{aligned} \frac{-17ip}{8} + \frac{-27i^2p}{8} & = \frac{-17ip}{\color{blue}{8}} + \frac{-27i^2p}{\color{blue}{8}} = \\[1ex] &=\frac{ -17ip + \left( -27i^2p \right) }{ \color{blue}{ 8 }}= \frac{-27i^2p-17ip}{8} \end{aligned} $$ |
| ⑩ | Divide $ \dfrac{-27i^2p-17ip}{8} $ by $ 2 $ to get $ \dfrac{ -27i^2p-17ip }{ 16 } $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{-27i^2p-17ip}{8} }{2} & \xlongequal{\text{Step 1}} \frac{-27i^2p-17ip}{8} \cdot \frac{\color{blue}{1}}{\color{blue}{2}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ \left( -27i^2p-17ip \right) \cdot 1 }{ 8 \cdot 2 } \xlongequal{\text{Step 3}} \frac{ -27i^2p-17ip }{ 16 } \end{aligned} $$ |
| ⑪ | Add $ \dfrac{-27i^2p-17ip}{16} $ and $ 2i $ to get $ \dfrac{ \color{purple}{ -27i^2p-17ip+32i } }{ 16 }$. Step 1: Write $ 2i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |