Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{1-2i}{2+i}+\frac{4-i}{3+2i}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-i+\frac{10-11i}{13} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-24i+10}{13}\end{aligned} $$ | |
| ① | Divide $ \, 1-2i \, $ by $ \, 2+i \, $ to get $\,\, -i $. ( view steps )Divide $ \, 4-i \, $ by $ \, 3+2i \, $ to get $\,\, \dfrac{10-11i}{13} $. ( view steps ) |
| ② | Add $-i$ and $ \dfrac{10-11i}{13} $ to get $ \dfrac{ \color{purple}{ -24i+10 } }{ 13 }$. Step 1: Write $ -i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |