Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{(0.4+0.8j)\cdot(250+40j)}{250.4+40.8j}& \xlongequal{ }\frac{(0.4+0j)\cdot(250+40j)}{250.4+40j} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{0+0j+0j+0j^2}{250.4+40j} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{0}{250+40j} \xlongequal{ } \\[1 em] & \xlongequal{ }0\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{00j}\right) $ by each term in $ \left( 250+40j\right) $. $$ \left( \color{blue}{00j}\right) \cdot \left( 250+40j\right) = 0 \cancel{0j} \cancel{0j}0j^2 $$ |
| ② | Simplify numerator $$ 0 \, \color{blue}{ \cancel{0j}} \, \, \color{blue}{ \cancel{0j}} \,0j^2 = 0 $$ |