Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{0.1-i\cdot0.5}{s-(-2+i)}+\frac{0.1+i\cdot0.5}{s-(-2-i)}& \xlongequal{ }\frac{0.1-0i}{s-(-2+i)}+\frac{0.1+0i}{s-(-2-i)} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{0.1-0i}{s+2-i}+\frac{0.1+0i}{s+2+i} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{0}{-i^2+s^2+4s+4} \xlongequal{ } \\[1 em] & \xlongequal{ }0\end{aligned} $$ | |
| ① | Remove the parentheses by changing the sign of each term within them. $$ - \left( -2+i \right) = 2-i $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left( -2-i \right) = 2+i $$ |
| ③ | Add $ \dfrac{00i}{s+2-i} $ and $ \dfrac{00i}{s+2+i} $ to get $ \dfrac{ \color{purple}{ 0 } }{ -i^2+s^2+4s+4 }$. To add raitonal expressions, both fractions must have the same denominator. |