Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\frac{(2z-pi)(2z+2)}{z^2+2z+3}-2log(z^2-2z+3)}{4z^2-4piz+piz}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\frac{4z^2+4z-2ipz-2ip}{z^2+2z+3}-2log(z^2-2z+3)}{4z^2-4piz+piz} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{\frac{4z^2+4z-2ipz-2ip}{z^2+2z+3}-(2gloz^2-4gloz+6glo)}{4z^2-4piz+piz} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\frac{-2gloz^4-4gloz^2-18glo-2ipz-2ip+4z^2+4z}{z^2+2z+3}}{4z^2-4piz+piz} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{\frac{-2gloz^4-4gloz^2-18glo-2ipz-2ip+4z^2+4z}{z^2+2z+3}}{-3ipz+4z^2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{-2gloz^4-4gloz^2-18glo-2ipz-2ip+4z^2+4z}{-3ipz^3-6ipz^2+4z^4-9ipz+8z^3+12z^2}\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{2z-ip}\right) $ by each term in $ \left( 2z+2\right) $. $$ \left( \color{blue}{2z-ip}\right) \cdot \left( 2z+2\right) = 4z^2+4z-2ipz-2ip $$ |
| ② | Multiply $ \color{blue}{2glo} $ by $ \left( z^2-2z+3\right) $ $$ \color{blue}{2glo} \cdot \left( z^2-2z+3\right) = 2gloz^2-4gloz+6glo $$ |
| ③ | Subtract $2gloz^2-4gloz+6glo$ from $ \dfrac{4z^2+4z-2ipz-2ip}{z^2+2z+3} $ to get $ \dfrac{ \color{purple}{ -2gloz^4-4gloz^2-18glo-2ipz-2ip+4z^2+4z } }{ z^2+2z+3 }$. Step 1: Write $ 2gloz^2-4gloz+6glo $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ④ | Combine like terms: $$ 4z^2 \color{blue}{-4ipz} + \color{blue}{ipz} = \color{blue}{-3ipz} +4z^2 $$ |
| ⑤ | Divide $ \dfrac{-2gloz^4-4gloz^2-18glo-2ipz-2ip+4z^2+4z}{z^2+2z+3} $ by $ -3ipz+4z^2 $ to get $ \dfrac{-2gloz^4-4gloz^2-18glo-2ipz-2ip+4z^2+4z}{-3ipz^3-6ipz^2+4z^4-9ipz+8z^3+12z^2} $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{-2gloz^4-4gloz^2-18glo-2ipz-2ip+4z^2+4z}{z^2+2z+3} }{-3ipz+4z^2} & \xlongequal{\text{Step 1}} \frac{-2gloz^4-4gloz^2-18glo-2ipz-2ip+4z^2+4z}{z^2+2z+3} \cdot \frac{\color{blue}{1}}{\color{blue}{-3ipz+4z^2}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ \left( -2gloz^4-4gloz^2-18glo-2ipz-2ip+4z^2+4z \right) \cdot 1 }{ \left( z^2+2z+3 \right) \cdot \left( -3ipz+4z^2 \right) } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ -2gloz^4-4gloz^2-18glo-2ipz-2ip+4z^2+4z }{ -3ipz^3+4z^4-6ipz^2+8z^3-9ipz+12z^2 } = \frac{-2gloz^4-4gloz^2-18glo-2ipz-2ip+4z^2+4z}{-3ipz^3-6ipz^2+4z^4-9ipz+8z^3+12z^2} \end{aligned} $$ |