## Limits and Derivatives Formulas

## 1. Limits

## Properties

if $\lim _{x \rightarrow a} f(x)=l$ and $\lim _{x \rightarrow a} g(x)=m$, then
$\lim _{x \rightarrow a}[f(x) \pm g(x)]=l \pm m$
$\lim _{x \rightarrow a}[f(x) \cdot g(x)]=l \cdot m$
$\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{l}{m}$ where $m \neq 0$
$\lim _{x \rightarrow a} c \cdot f(x)=c \cdot l$
$\lim _{x \rightarrow a} \frac{1}{f(x)}=\frac{1}{l}$ where $l \neq 0$

## Formulas

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e \\
& \lim _{x \rightarrow \infty}(1+n)^{\frac{1}{n}}=e \\
& \lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \\
& \lim _{x \rightarrow 0} \frac{\tan x}{x}=1 \\
& \lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0 \\
& \lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n a^{n-1} \\
& \lim _{x \rightarrow 0} \frac{a^{n}-1}{x}=\ln a
\end{aligned}
$$

## 2. Common Derivatives

## Basic Properties and Formulas

$$
\begin{aligned}
& (c f)^{\prime}=c f^{\prime}(x) \\
& (f \pm g)^{\prime}=f^{\prime}(x)+g^{\prime}(x)
\end{aligned}
$$

Product rule

$$
(f \cdot g)^{\prime}=f^{\prime} \cdot g+f \cdot g^{\prime}
$$

Quotient rule
$\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} \cdot g-f \cdot g^{\prime}}{g^{2}}$

Power rule
$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
Chain rule
$\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) g^{\prime}(x)$

## Common Derivatives

$\frac{d}{d x}(c)=0$
$\frac{d}{d x}(x)=1$
$\frac{d}{d x}(\sin x)=\cos x$
$\frac{d}{d x}(\cos x)=-\sin x$
$\frac{d}{d x}(\tan x)=\frac{1}{\cos ^{2} x}=\sec ^{2} x$
$\frac{d}{d x}(\sec x)=\sec x \tan x$
$\frac{d}{d x}(\csc x)=-\csc \cot x$
$\frac{d}{d x}(\cot x)=-\frac{1}{\sin ^{2} x}=-\csc ^{2} x$
$\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}$
$\frac{d}{d x}\left(\cos ^{-1} x\right)=-\frac{1}{\sqrt{1-x^{2}}}$
$\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}$
$\frac{d}{d x}\left(a^{x}\right)=a^{x} \ln a$
$\frac{d}{d x}\left(e^{x}\right)=e^{x}$
$\frac{d}{d x}(\ln x)=\frac{1}{x}, x>0$
$\frac{d}{d x}(\ln |x|)=\frac{1}{x}, x \neq 0$
$\frac{d}{d x}\left(\log _{a} x\right)=\frac{1}{x \ln a}, x>0$

## 3. Higher-order Derivatives

## Definitions and properties

Second derivative
$f^{\prime \prime}=\frac{d}{d x}\left(\frac{d y}{d x}\right)-\frac{d^{2} y}{d x^{2}}$
Higher-Order derivative

$$
\begin{aligned}
& f^{(n)}=\left(f^{(n-1)}\right)^{\prime} \\
& (f+g)^{(n)}=f^{(n)}+g^{(n)} \\
& (f-g)^{(n)}=f^{(n)}-g^{(n)}
\end{aligned}
$$

Leibniz's Formulas
$(f \cdot g)^{\prime \prime}=f^{\prime \prime} \cdot g+2 f^{\prime} \cdot g^{\prime}+f \cdot g^{\prime \prime}$
$(f \cdot g)^{\prime \prime \prime}=f^{\prime \prime \prime} \cdot g+3 f^{\prime \prime} \cdot g^{\prime}+3 f^{\prime} \cdot g^{\prime \prime}+f \cdot g^{\prime \prime \prime}$
$(f \cdot g)^{(n)}=f^{(n)} g+n f^{(n-1)} g+\frac{n(n-1)}{1 \cdot 2} f^{(n-2)} g^{\prime \prime}+\ldots+f g^{(n)}$
Important Formulas
$\left(x^{m}\right)^{(n)}=\frac{m!}{(m-n)!} x^{m-n}$
$\left(x^{n}\right)^{(n)}=n!$
$\left(\log _{a} x\right)^{(n)}=\frac{(-1)^{n-1}(n-1)!}{x^{n} \cdot \ln a}$
$(\ln x)^{(n)}=\frac{(-1)^{n-1}(n-1)!}{x^{n}}$
$\left(a^{x}\right)^{(n)}=a^{x} \ln ^{n} a$
$\left(e^{x}\right)^{(n)}=e^{x}$
$\left(a^{m x}\right)^{(n)}=m^{n} a^{m x} \ln ^{n} a$
$(\sin x)^{(n)}=\sin \left(x+\frac{n \pi}{2}\right)$
$(\cos x)^{(n)}=\cos \left(x+\frac{n \pi}{2}\right)$

