To find radius $ r $ use formula:
$$ V = \dfrac{ 4 \cdot r^3 \cdot \pi }{ 3 }$$After substituting $V = 271.8\, \text{cm}$ we have:
$$ 271.8\, \text{cm} = \dfrac{ 4 \cdot r^3 \cdot \pi }{ 3 }$$ $$ 271.8\, \text{cm} \cdot 3 = 4 \cdot r^3 \cdot \pi $$ $$ 815.4\, \text{cm} = 4 \cdot r^3 \cdot \pi $$ $$ r^3 \cdot \pi = \dfrac{ 815.4\, \text{cm} }{ 4 } $$ $$ r^3 \cdot \pi = 203.85\, \text{cm} $$ $$ r = \sqrt[3]{ \frac{ 203.85\, \text{cm} }{\pi} } $$ $$ r \approx 4.0184 $$