STEP 1: find angle $ \beta $
To find angle $ \beta $ use formula:
$$ \alpha + \beta + \gamma = 180^o $$After substituting $\alpha = 109^o$ and $\gamma = 25^o$ we have:
$$ 109^o + \beta + 25^o = 180^o $$ $$ \beta + 134^o = 180^o $$ $$ \beta = 180^o - 134^o $$ $$ \beta = 46^o $$STEP 2: find side $ a $
To find side $ a $ use The Law of Sines:
$$ \dfrac{ a } { \sin( \alpha ) } = \dfrac{ b } { \sin( \beta ) } $$After substituting $\alpha = 109^o$, $b = 8\, \text{cm}$ and $\beta = 46^o$ we have:
$$ \dfrac{ a } { \sin( 109^o ) } = \dfrac{ 8\, \text{cm} } { \sin( 46^o ) } $$ $$ \dfrac{ a } { 0.9455 } = \dfrac{ 8\, \text{cm} } { 0.7193 } $$ $$ a \cdot 0.7193 = 0.9455 \cdot 8\, \text{cm} $$ $$ a \cdot 0.7193 = 7.5641\, \text{cm} $$ $$ a = \dfrac{ 7.5641\, \text{cm} }{ 0.7193 } $$ $$ a \approx 10.5154\, \text{cm} $$