Tap the blue points to see coordinates.
STEP 1:Find the x-intercepts
To find the x-intercepts solve, the equation $ \color{blue}{ 2x^5-41x^3+32x = 0 } $
The solutions of this equation are:
$$ \begin{matrix}x_1 = 0 & x_2 = 0.9015 & x_3 = -0.9015 & x_4 = -4.437 & x_5 = 4.437 \end{matrix} $$(you can use the step-by-step polynomial equation solver to see a detailed explanation of how to solve the equation)
STEP 2:Find the y-intercepts
To find the y-intercepts, substitute $ x = 0 $ into $ \color{blue}{ p(x) = 2x^5-41x^3+32x } $, so:
$$ \text{Y inercept} = p(0) = 0 $$STEP 3:Find the end behavior
The end behavior of a polynomial is the same as the end behavior of a leading term.
$$ \lim_{x \to -\infty} \left( 2x^5-41x^3+32x \right) = \lim_{x \to -\infty} 2x^5 = \color{blue}{ -\infty } $$The graph starts in the lower-left corner.
$$ \lim_{x \to \infty} \left( 2x^5-41x^3+32x \right) = \lim_{x \to \infty} 2x^5 = \color{blue}{ \infty } $$The graph ends in the upper-right corner.
STEP 4:Find the turning points
To determine the turning points, we need to find the first derivative of $ p(x) $:
$$ p^{\prime} (x) = 10x^4-123x^2+32 $$The x coordinate of the turning points are located at the zeros of the first derivative
$$ p^{\prime} (x) = 0 $$ $$ \begin{matrix}x_1 = 0.5157 & x_2 = -0.5157 & x_3 = -3.469 & x_4 = 3.469 \end{matrix} $$(cleck here to see a explanation of how to solve the equation)
To find the y coordinates, substitute the above values into $ p(x) $
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ 0.5157 } \Rightarrow p\left(0.5157\right) = \color{orangered}{ 10.9523 }\\[1 em] \text{for } ~ x & = \color{blue}{ -0.5157 } \Rightarrow p\left(-0.5157\right) = \color{orangered}{ -10.9523 }\\[1 em] \text{for } ~ x & = \color{blue}{ -3.469 } \Rightarrow p\left(-3.469\right) = \color{orangered}{ 595.8353 }\\[1 em] \text{for } ~ x & = \color{blue}{ 3.469 } \Rightarrow p\left(3.469\right) = \color{orangered}{ -595.8353 }\end{aligned} $$So the turning points are:
$$ \begin{matrix} \left( 0.5157, 10.9523 \right) & \left( -0.5157, -10.9523 \right) & \left( -3.469, 595.8353 \right) & \left( 3.469, -595.8353 \right)\end{matrix} $$STEP 5:Find the inflection points
The inflection points are located at zeroes of second derivative. The second derivative is $ p^{\prime \prime} (x) = 40x^3-246x $.
The zeros of second derivative are
$$ \begin{matrix}x_1 = 0 & x_2 = \dfrac{\sqrt{ 615 }}{ 10 } & x_3 = - \dfrac{\sqrt{ 615 }}{ 10 } \end{matrix} $$Substitute the x values into $ p(x) $ to get y coordinates
$$ \begin{aligned} \text{for } ~ x & = \color{blue}{ 0 } \Rightarrow p\left(0\right) = \color{orangered}{ 0 }\\[1 em] \text{for } ~ x & = \color{blue}{ \frac{\sqrt{ 615 }}{ 10 } } \Rightarrow p\left(\frac{\sqrt{ 615 }}{ 10 }\right) = \color{orangered}{ -28901 \frac{\sqrt{ 615 }}{ 2000 } }\\[1 em] \text{for } ~ x & = \color{blue}{ - \frac{\sqrt{ 615 }}{ 10 } } \Rightarrow p\left(- \frac{\sqrt{ 615 }}{ 10 }\right) = \color{orangered}{ \frac{ 28901 \sqrt{ 615}}{ 2000 } }\end{aligned} $$So the inflection points are:
$$ \begin{matrix} \left( 0, 0 \right) & \left( \dfrac{\sqrt{ 615 }}{ 10 }, -28901 \dfrac{\sqrt{ 615 }}{ 2000 } \right) & \left( - \dfrac{\sqrt{ 615 }}{ 10 }, \dfrac{ 28901 \sqrt{ 615}}{ 2000 } \right)\end{matrix} $$