The equation of the line perpendicular to the given line that contains point $ A $ is:
$ \color{blue}{ 3x+2y+10=0 }$ ( General form )
$ \color{blue}{ y = - \dfrac{ 3 }{ 2 } x - 5 } ~~~$ ( Slope y-intercept form )
Step 1:The slope of a given line is $ m = \frac{ 2 }{ 3 } $.
Step 2: The perpendicular slope ($ m_1 $) is negative reciprocal of the slope $ m $.
$$ m_1 = - \frac{1}{m} = -\frac{ 1 }{ \frac{ 2 }{ 3 } } = -\frac{ 3 }{ 2 } $$So the perpendicular line will have a slope of $ m_1 = -\frac{ 3 }{ 2 } $
Step 3: Now we have a point and the slope so we can use point-slope form, which is:
$$ y - y_0 = m_1 (x - x_0) $$In this example we have: $ m_1 = -\frac{ 3 }{ 2 } $ , $ x_0 = -4 $ and $ y_0 = 1 $. After substitution we have:
$$ \begin{aligned} y - y_0 =& ~ m_1 (x - x_0) \\ y - 1 =& ~ -\frac{ 3 }{ 2 } ( x - \left( -4\right)) \\y -1 =& ~ -\frac{ 3 }{ 2 } x -6 \\y =& ~ -\frac{ 3 }{ 2 } x -6 + 1 \\y =& ~ - \frac{ 3 }{ 2 } x - 5\\ \end{aligned} $$