The equation of the line parallel to the given line that contains point $ A $ is:
$ \color{blue}{ 10x-3y+24=0 }$ ( General form )
$ \color{blue}{ y = \dfrac{ 10 }{ 3 } x + 8 } ~~~$ ( Slope y-intercept form )
Step 1:The slope of a given line is $ m = \frac{ 10 }{ 3 } $.
Step 2: Parallel lines have the same slope, so the slope of the unknown line ($ m_1 $) will also be $ \frac{ 10 }{ 3 } $. So the parallel line will have a slope of $ m_1 = \frac{ 10 }{ 3 } $
Step 3: Now we have a point and the slope so we can use point-slope form, which is:
$$ y - y_0 = m_1 (x - x_0) $$In this example we have: $ m_1 = \frac{ 10 }{ 3 } $ , $ x_0 = -3 $ and $ y_0 = -2 $. After substitution we have:
$$ \begin{aligned} y - y_0 =& ~ m_1 (x - x_0) \\ y - \left( -2\right) =& ~ \frac{ 10 }{ 3 } ( x - \left( -3\right)) \\y + 2 =& ~ \frac{ 10 }{ 3 } x + 10 \\y =& ~ \frac{ 10 }{ 3 } x + 10 -2 \\y =& ~ \frac{ 10 }{ 3 } x + 8\\ \end{aligned} $$