Find eigenvectors of matrix:
$$ A = \left[ \begin{matrix}4&2&-2\\-5&3&2\\-2&4&1\end{matrix} \right] $$The eigenvectors and eigenvalues of matrix A are:
Eigenvalue | Eigenvector |
$ 1 $ | $ \begin{bmatrix} 1 \cr {{1}\over{2}} \cr 2 \end{bmatrix} $ |
$ 2 $ | $ \begin{bmatrix} 1 \cr 1 \cr 2 \end{bmatrix} $ |
$ 5 $ | $ \begin{bmatrix} 0 \cr 1 \cr 1 \end{bmatrix} $ |
Step 1 : Find characteristic polynomial $ p(\lambda) $:
$$ p(\lambda) = -\lambda^3+8\lambda^2-17\lambda+10 $$Step 2 : Find the eigenvalues by solving the characteristic equation $ -\lambda^3+8\lambda^2-17\lambda+10 = 0. $
The eigenvalues are
$$ \lambda_1 = 1 ~ , ~ \lambda_2 = 2 ~ , ~ \lambda_3 = 5 $$( click here to view an explanation on how to solve this equation.)
Step 3 : To find the associated eigenvectors ( $ x $ ), we have to solve the equation $ A x = \lambda I $.
For $ \lambda_ 0 = 1 $ we have $ A x = 1 I $.
For $ \lambda_ 1 = 2 $ we have $ A x = 2 I $.
For $ \lambda_ 2 = 5 $ we have $ A x = 5 I $.