Find eigenvectors of matrix:
$$ A = \left[ \begin{matrix}0&1&0\\1&0&1\\0&1&0\end{matrix} \right] $$The eigenvectors and eigenvalues of matrix A are:
Eigenvalue | Eigenvector |
$ -\sqrt{2} $ | $ \begin{bmatrix} 1 \cr -\sqrt{2} \cr 1 \end{bmatrix} $ |
$ \sqrt{2} $ | $ \begin{bmatrix} 1 \cr \sqrt{2} \cr 1 \end{bmatrix} $ |
$ 0 $ | $ \begin{bmatrix} 1 \cr 0 \cr -1 \end{bmatrix} $ |
Step 1 : Find characteristic polynomial $ p(\lambda) $:
$$ p(\lambda) = -\lambda^3+2\lambda $$Step 2 : Find the eigenvalues by solving the characteristic equation $ -\lambda^3+2\lambda = 0. $
The eigenvalues are
$$ \lambda_1 = -\sqrt{2} ~ , ~ \lambda_2 = \sqrt{2} ~ , ~ \lambda_3 = 0 $$( click here to view an explanation on how to solve this equation.)
Step 3 : To find the associated eigenvectors ( $ x $ ), we have to solve the equation $ A x = \lambda I $.
For $ \lambda_ 0 = -\sqrt{2} $ we have $ A x = -\sqrt{2} I $.
For $ \lambda_ 1 = \sqrt{2} $ we have $ A x = \sqrt{2} I $.
For $ \lambda_ 2 = 0 $ we have $ A x = 0 I $.