Find eigenvectors of matrix:
$$ A = \left[ \begin{matrix}-2&-4&-6\\-1&-2&-3\\1&2&3\end{matrix} \right] $$The eigenvectors and eigenvalues of matrix A are:
Eigenvalue | Eigenvector |
$ -1 $ | $ \begin{bmatrix} 1 \cr {{1}\over{2}} \cr -{{1}\over{2}} \end{bmatrix} $ |
$ 0 $ | $ \begin{bmatrix} 1 \cr 0 \cr -{{1}\over{3}} \end{bmatrix} $ |
$ 0 $ | $ \begin{bmatrix} 0 \cr 1 \cr -{{2}\over{3}} \end{bmatrix} $ |
Step 1 : Find characteristic polynomial $ p(\lambda) $:
$$ p(\lambda) = -\lambda^3-\lambda^2 $$Step 2 : Find the eigenvalues by solving the characteristic equation $ -\lambda^3-\lambda^2 = 0. $
The eigenvalues are
$$ \lambda_1 = -1 ~ , ~ \lambda_2 = 0 ~ , ~ \lambda_3 = 0 $$( click here to view an explanation on how to solve this equation.)
Step 3 : To find the associated eigenvectors ( $ x $ ), we have to solve the equation $ A x = \lambda I $.
For $ \lambda_ 0 = -1 $ we have $ A x = -1 I $.
For $ \lambda_ 1 = 0 $ we have $ A x = 0 I $.