Find eigenvectors of matrix:
$$ A = \left[ \begin{matrix}8&-2\\5&2\end{matrix} \right] $$The eigenvectors and eigenvalues of matrix A are:
Eigenvalue | Eigenvector |
$ 5-i $ | $ \begin{bmatrix} 1 \cr {{i+3}\over{2}} \end{bmatrix} $ |
$ i+5 $ | $ \begin{bmatrix} 1 \cr -{{i-3}\over{2}} \end{bmatrix} $ |
Step 1 : Find characteristic polynomial $ p(\lambda) $:
$$ p(\lambda) = \lambda^2-10\lambda+26 $$Step 2 : Find the eigenvalues by solving the characteristic equation $ \lambda^2-10\lambda+26 = 0. $
The eigenvalues are
$$ \lambda_1 = 5-i ~ , ~ \lambda_2 = i+5 $$( click here to view an explanation on how to solve this equation.)
Step 3 : To find the associated eigenvectors ( $ x $ ), we have to solve the equation $ A x = \lambda I $.
For $ \lambda_ 0 = 5-i $ we have $ A x = 5-i I $.
For $ \lambda_ 1 = i+5 $ we have $ A x = i+5 I $.