Find eigenvectors of matrix:
$$ A = \left[ \begin{matrix}1&2\\4&3\end{matrix} \right] $$The eigenvectors and eigenvalues of matrix A are:
Eigenvalue | Eigenvector |
$ 5 $ | $ \begin{bmatrix} 1 \cr 2 \end{bmatrix} $ |
$ -1 $ | $ \begin{bmatrix} 1 \cr -1 \end{bmatrix} $ |
Step 1 : Find characteristic polynomial $ p(\lambda) $:
$$ p(\lambda) = \lambda^2-4\lambda-5 $$Step 2 : Find the eigenvalues by solving the characteristic equation $ \lambda^2-4\lambda-5 = 0. $
The eigenvalues are
$$ \lambda_1 = 5 ~ , ~ \lambda_2 = -1 $$( click here to view an explanation on how to solve this equation.)
Step 3 : To find the associated eigenvectors ( $ x $ ), we have to solve the equation $ A x = \lambda I $.
For $ \lambda_ 0 = 5 $ we have $ A x = 5 I $.
For $ \lambda_ 1 = -1 $ we have $ A x = -1 I $.