Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org

Division of complex numbers calculator

google play badge app store badge

Use this online calculator to divide complex numbers.
The calculator shows a step-by-step, easy-to-understand solution on how the division was done.

Divide complex numbers: $$ \dfrac{20+10i}{1-3i} $$

solution

$$ \dfrac{20+10i}{1-3i} = -1+7i $$

explanation

Step 1: Determine the conjugate of the denominator. ( to find the conjugate just change the sign of the imaginary part ).

In this example, the conjugate of $ \color{orangered}{ 1-3i }\, $ is $ \color{blue}{ 1+3i } $.

Step 2: Multiply both the numerator and denominator by the conjugate:

$$\begin{aligned} \frac{ 20+10i }{ 1-3i } &= \frac{ 20+10i }{ 1-3i } \cdot \frac{ \color{blue}{ 1+3i } }{ \color{blue}{ 1+3i } } = \\[1 em] &= \frac{ \left( 20+10i \right) \cdot \left( 1+3i \right) }{ \left( 1-3i \right) \cdot \left( 1+3i \right) } \end{aligned} $$

Step 3: Simplify numerator and denominator (use $\color{blue}{i^2 = -1}$)

$$ \begin{aligned} \left( 20+10i \right) \cdot \left( 1+3i \right) &= 20 \cdot 1 + 20 \cdot \left(3 \,i \right) + \left( 10 \,i \right) \cdot \left(1 \right) + \left( 10 \,i \right) \cdot \left(3 \,i \right) = \\[1 em] &= 20 + 60 \, i + 10 \, i + 30 \color{blue}{(-1)} = \\[1 em] &= -10+70i\end{aligned} $$ $$ \begin{aligned} \left( 1-3i \right) \cdot \left( 1+3i \right) &= 1 \cdot 1 + 1 \cdot \left(3 \,i \right) + \left( -3 \,i \right) \cdot \left(1 \right) + \left( -3 \,i \right) \cdot \left(3 \,i \right) = \\[1 em] &= 1 + 3 \, i -3 \, i -9 \color{blue}{(-1)} = \\[1 em] &= 10\end{aligned} $$

Step 4: Separate real and imaginary parts:

$$ \frac{ 20+10i }{ 1-3i } = \frac{ -10+70i }{ 10 } = \frac{ -10 }{ 10 } + \frac{ 70 }{ 10 } i= -1+7i $$

Report an Error!

Script name : complex-numbers-division-calculator

Form values: 20 , 1 , 10 , 1 , 2 , 3 , g , Divide 20+10i by 1-3i , , Divide 20+10i by 1-3i

Comment (optional)

 
close
Complex numbers division calculator
input two complex number and tap calculate button
help ↓↓ examples ↓↓ tutorial ↓↓
+
+
$\dfrac{3-2i}{4+5i}$
$\dfrac{\frac{1}{2}-i}{2+\sqrt{2}i}$
thumb_up 928 thumb_down

Get Widget Code

working...
Examples
ex 1:
Divide $ \left( 2 - 6i \right) $ by $ \left( 1 + i \right)$.
ex 2:
Divide $ \left( \dfrac{1}{2} - 2i \right) $ by $ \left( 2 - i \right)$.
ex 3:
Divide complex numbers $ \,\,\dfrac{ 2 - 3i}{ \sqrt{2} + i} $
Find more worked-out examples in our database of solved problems..
TUTORIAL

How to divide complex numbers?

This calculator uses multiplication by conjugate to divide complex numbers.

Example 1:

$$ \frac{ 4 + 2i }{1 + i} $$

We begin by multiplying numerator and denominator by complex conjugate of $ \color{purple}{1 + i} $.

$$ \frac{4 + 2i}{\color{purple}{1 + i}} \cdot \frac{\color{blue}{1 - i}}{\color{blue}{1 - i}} = \frac{(4+2i)(1-i)}{(1+i)(1-i)}$$

Then we expand and simplify both products. Keep in mind that $ i^2 = -1 $.

$$ \begin{aligned} \frac{(4+2i)(1-i)}{(1+i)(1-i)} &= \frac{4 - 4i + 2i - 2\color{blue}{i^2}}{1+i-i-i^2} = \\[ 1 em] &= \frac{4 - 2i - 2\color{blue}{(-1)}}{1-\color{purple}{i^2}} = \\[ 1 em] &= \frac{4 - 2i + 2)}{1-\color{purple}{(-1)}} = \\[ 1 em] &= \frac{6 - 2i)}{2} \end{aligned} $$

At the end we separate real and imaginary parts:

$$ \frac{6 - 2i}{2} = \frac{6}{2} - \frac{2}{2}i = 3 - i $$

Example 2:

Divide $ 10 - 25i $ by $ 5i $

Although the complex conjugate of $ 5i $ is $-5i$, we can simplify division process by multiplying numerator and denominator with $ - i $.

$$ \begin{aligned} \frac{10-25i}{5i} &= \frac{10-25i}{5i} \cdot \frac{-i}{-i} = \\[1 em] &= \frac{(10-25i)(-i)}{(5i)(-i)}= \\[ 1 em] &= \frac{-10i + 25i^2}{-5i^2} = \\[ 1 em] &= \frac{-10i - 25}{5} = \\[ 1 em] &= \frac{-25}{5} + \frac{-10}{5} i= \\[ 1 em] &= -5 - 2 i= \\[ 1 em] \end{aligned} $$

Example 3:

Divide $ 20 + 10i $ by $ 1 - 3i $

Solution

Search our database with more than 300 calculators
362 861 664 solved problems
×
ans:
syntax error
C
DEL
ANS
±
(
)
÷
×
7
8
9
4
5
6
+
1
2
3
=
0
.