Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org

Division of complex numbers calculator

google play badge app store badge

Use this online calculator to divide complex numbers.
The calculator shows a step-by-step, easy-to-understand solution on how the division was done.

Divide complex numbers: $$ \dfrac{20+10i}{1-3i} $$

solution

$$ \dfrac{20+10i}{1-3i} = -1+7i $$

explanation

Step 1: Determine the conjugate of the denominator. ( to find the conjugate just change the sign of the imaginary part ).

In this example, the conjugate of $ \color{orangered}{ 1-3i }\, $ is $ \color{blue}{ 1+3i } $.

Step 2: Multiply both the numerator and denominator by the conjugate:

$$\begin{aligned} \frac{ 20+10i }{ 1-3i } &= \frac{ 20+10i }{ 1-3i } \cdot \frac{ \color{blue}{ 1+3i } }{ \color{blue}{ 1+3i } } = \\[1 em] &= \frac{ \left( 20+10i \right) \cdot \left( 1+3i \right) }{ \left( 1-3i \right) \cdot \left( 1+3i \right) } \end{aligned} $$

Step 3: Simplify numerator and denominator (use $\color{blue}{i^2 = -1}$)

$$ \begin{aligned} \left( 20+10i \right) \cdot \left( 1+3i \right) &= 20 \cdot 1 + 20 \cdot \left(3 \,i \right) + \left( 10 \,i \right) \cdot \left(1 \right) + \left( 10 \,i \right) \cdot \left(3 \,i \right) = \\[1 em] &= 20 + 60 \, i + 10 \, i + 30 \color{blue}{(-1)} = \\[1 em] &= -10+70i\end{aligned} $$ $$ \begin{aligned} \left( 1-3i \right) \cdot \left( 1+3i \right) &= 1 \cdot 1 + 1 \cdot \left(3 \,i \right) + \left( -3 \,i \right) \cdot \left(1 \right) + \left( -3 \,i \right) \cdot \left(3 \,i \right) = \\[1 em] &= 1 + 3 \, i -3 \, i -9 \color{blue}{(-1)} = \\[1 em] &= 10\end{aligned} $$

Step 4: Separate real and imaginary parts:

$$ \frac{ 20+10i }{ 1-3i } = \frac{ -10+70i }{ 10 } = \frac{ -10 }{ 10 } + \frac{ 70 }{ 10 } i= -1+7i $$

Report an Error !

Script name : complex-numbers-division-calculator

Form values: 20 , 1 , 10 , 1 , 2 , 3 , g , Divide 20+10i by 1-3i , , Divide 20+10i by 1-3i

Comment (optional)

Division of complex numbers calculator
learn how to divide complex numbers
help ↓↓ examples ↓↓ tutorial ↓↓
$\dfrac{3-2i}{4+5i}$
$\dfrac{\frac{1}{2}-i}{2+\sqrt{2}i}$
working...
EXAMPLES
example 1:ex 1:
Divide $ \left( 2 - 6i \right) $ by $ \left( 1 + i \right)$.
example 2:ex 2:
Divide $ \left( \dfrac{1}{2} - 2i \right) $ by $ \left( 2 - i \right)$.
example 3:ex 3:
Divide complex numbers $ \,\,\dfrac{ 2 - 3i}{ \sqrt{2} + i} $
Find more worked-out examples in the database of solved problems..
TUTORIAL

How to divide complex numbers?

This calculator uses multiplication by conjugate to divide complex numbers.

Example 1:

$$ \frac{ 4 + 2i }{1 + i} $$

We begin by multiplying numerator and denominator by complex conjugate of $ \color{purple}{1 + i} $.

$$ \frac{4 + 2i}{\color{purple}{1 + i}} \cdot \frac{\color{blue}{1 - i}}{\color{blue}{1 - i}} = \frac{(4+2i)(1-i)}{(1+i)(1-i)}$$

Then we expand and simplify both products. Keep in mind that $ i^2 = -1 $.

$$ \begin{aligned} \frac{(4+2i)(1-i)}{(1+i)(1-i)} &= \frac{4 - 4i + 2i - 2\color{blue}{i^2}}{1+i-i-i^2} = \\[ 1 em] &= \frac{4 - 2i - 2\color{blue}{(-1)}}{1-\color{purple}{i^2}} = \\[ 1 em] &= \frac{4 - 2i + 2)}{1-\color{purple}{(-1)}} = \\[ 1 em] &= \frac{6 - 2i)}{2} \end{aligned} $$

At the end we separate real and imaginary parts:

$$ \frac{6 - 2i}{2} = \frac{6}{2} - \frac{2}{2}i = 3 - i $$

Example 2:

Divide $ 10 - 25i $ by $ 5i $

Although the complex conjugate of $ 5i $ is $-5i$, we can simplify division process by multiplying numerator and denominator with $ - i $.

$$ \begin{aligned} \frac{10-25i}{5i} &= \frac{10-25i}{5i} \cdot \frac{-i}{-i} = \\[1 em] &= \frac{(10-25i)(-i)}{(5i)(-i)}= \\[ 1 em] &= \frac{-10i + 25i^2}{-5i^2} = \\[ 1 em] &= \frac{-10i - 25}{5} = \\[ 1 em] &= \frac{-25}{5} + \frac{-10}{5} i= \\[ 1 em] &= -5 - 2 i= \\[ 1 em] \end{aligned} $$

Example 3:

Divide $ 20 + 10i $ by $ 1 - 3i $

Solution

Search our database with more than 250 calculators
440 432 191 solved problems