Math Calculators, Lessons and Formulas

It is time to solve your math problem

• Math Tests
• ::
• ::
• Tests on solving radical equations and inequalities
Test Title:

# Tests on solving radical equations and inequalities

There are 2 tests inside this topic. Click the button below to change currently active quiz.

Chose a test inside this category.
Note: These tests should be done in suggested order.

Current: Test on solving radical inequalities
•  Q1: 1 pts Which of these IS radical unequality?
 $x + \sqrt{2} > 3$ $x + 2 < \sqrt{3}$ $\sqrt{x} + 2 = 3$ $\sqrt{x} + 2 \geq 3$
•  Q2: 1 pts Which of these is NOT a radical equation?
 $\sqrt{x+1} \leq \sqrt{x+1}$ $x + 2 > \sqrt{x}$ $x + \sqrt{2} \geq \sqrt{23}$
•  Q3: 1 pts
The unequality $\sqrt{-x} > 2$
soultions
•  Q4: 1 pts
The unequality $\sqrt{x} \leq -2$
soultions
•  Q5: 1 pts Solve unequality $\sqrt{x} > 3$
 $x > 6$ $x > 9$ $x > 3$
•  Q6: 2 pts Solve unequality $\sqrt{x} \leq 2$.
 $x \leq 4$ $x \leq 2$ $0< x \leq 4$ $0 \leq x \leq 4$
•  Q7: 2 pts The graph shows the solution set for which of the inequalities?
 $\sqrt{x} < 4$ $\sqrt{x} < 2$ $\sqrt{x} \leq 2$ $\sqrt{x} \leq 4$
•  Q8: 2 pts The graph shows the solution set for which of the inequality?
 $\sqrt{x+1} < 2$ $\sqrt{x-1} < 2$ $\sqrt{x+1} \leq 2$ $\sqrt{x-1} \leq 2$
•  Q9: 3 pts Solve unequality $\sqrt{x+4} < 9$.
 $x < 77$ $-4 \leq x \leq 3$ $4 \leq x \leq 77$ $-4 \leq x < 77$
•  Q10: 3 pts Solve unequality $\sqrt{x-1} < \sqrt{x+1}$.
 $-\infty < x < \infty$ $-1 < x < 1$ $1 \leq x < \infty$ $1 < x < \infty$