Math Calculators, Lessons and Formulas

It is time to solve your math problem

  • Math Tests
  • ::
  • Radicals
  • ::
  • Tests on solving radical equations and inequalities
Test Title:

Tests on solving radical equations and inequalities

There are 2 tests inside this topic. Click the button below to change currently active quiz.

Change current test

Current: Test on solving radical inequalities
  • Q1:
    1 pts
    Which of these IS radical unequality?
    $x + \sqrt{2} > 3$
    $x + 2 < \sqrt{3}$
    $\sqrt{x} + 2 = 3$
    $\sqrt{x} + 2 \geq 3$
  • Q2:
    1 pts
    Which of these is NOT a radical equation?
    $\sqrt{x+1} \leq \sqrt{x+1}$
    $x + 2 > \sqrt{x}$
    $x + \sqrt{2} \geq \sqrt{23}$
  • Q3:
    1 pts
    The unequality $\sqrt{-x} > 2$
    soultions
  • Q4:
    1 pts
    The unequality $\sqrt{x} \leq -2$
    soultions
  • Q5:
    1 pts
    Solve unequality $\sqrt{x} > 3$
    $x > 6$
    $x > 9$
    $x > 3$
  • Q6:
    2 pts
    Solve unequality $\sqrt{x} \leq 2$.
    $x \leq 4$
    $x \leq 2$
    $0< x \leq 4$
    $0 \leq x \leq 4$
  • Q7:
    2 pts
    The graph shows the solution set for which of the inequalities?
    $\sqrt{x} < 4$
    $\sqrt{x} < 2$
    $\sqrt{x} \leq 2$
    $\sqrt{x} \leq 4$
  • Q8:
    2 pts
    The graph shows the solution set for which of the inequality?
    $\sqrt{x+1} < 2$
    $\sqrt{x-1} < 2$
    $\sqrt{x+1} \leq 2$
    $\sqrt{x-1} \leq 2$
  • Q9:
    3 pts
    Solve unequality $\sqrt{x+4} < 9$.
    $x < 77$
    $-4 \leq x \leq 3$
    $4 \leq x \leq 77$
    $-4 \leq x < 77$
  • Q10:
    3 pts
    Solve unequality $\sqrt{x-1} < \sqrt{x+1}$.
    $-\infty < x < \infty$
    $-1 < x < 1$
    $1 \leq x < \infty$
    $1 < x < \infty$