Math Formulas: Set Identities

Definitions:

Universal set : I
Empty set: \varnothing
Union of sets
1.

$$
A \cup B=\{x: x \in A \text { or } x \in B\}
$$

Intersection of sets
2.

$$
A \cap B=\{x: x \in A \text { and } x \in B\}
$$

Complement
3.

$$
A^{\prime}=\{x \in I: x \notin A\}
$$

Difference of sets
4.

$$
A \backslash B=\{x: x \in A \text { and } x \notin B\}
$$

Cartesian product
5.

$$
A \times B=\{(x, y): x \in A \text { and } y \in B\}
$$

Set identities involving union

Commutativity
6.

$$
A \cup B=B \cup A
$$

Associativity
7.

$$
A \cup(B \cup C)=(A \cup B) \cup C
$$

Idempotency
8.

$$
A \cup A=A
$$

Set identities involving intersection

Commutativity
9.

$$
A \cap B=B \cap A
$$

Associativity
10.

$$
A \cap(B \cap C)=(A \cap B) \cap C
$$

Idempotency
11.

$$
A \cap A=A
$$

Set identities involving union and intersection
Distributivity
12.

$$
\begin{aligned}
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \\
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
\end{aligned}
$$

13.

Domination
14.

$$
A \cap \varnothing=\varnothing
$$

15.

$$
A \cup I=I
$$

Identity
16.

$$
A \cup \varnothing=\varnothing
$$

17.

$$
A \cap I=A
$$

Set identities involving union, intersection and complement

Complement of intersection and union
18.

$$
\begin{aligned}
& A \cup A^{\prime}=I \\
& A \cap A^{\prime}=\varnothing
\end{aligned}
$$

De Morgan's laws
20.

$$
(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}
$$

21.

$$
(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}
$$

Set identities involving difference

22.
23.
24.
25.
26.

$$
B \backslash A=B \backslash(A \cup B)
$$

$$
B \backslash A=B \cap A^{\prime}
$$

$$
(A \backslash B) \cap C=(A \cap C) \backslash(B \cap C)
$$

$$
A \backslash A=\varnothing
$$

$$
A^{\prime}=I \backslash A
$$

