Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org

Synthetic division calculator

google play badge app store badge

This calculator divides polynomials by binomials using synthetic division. Additionally, the calculator computes the remainder when a polynomial is divided by x−c and checks if the divisor is a factor of dividend. The calculator shows all the steps and provides a full explanation for each step.

Divide using synthetic division $$ ( 8 ) \div ( 1 ) $$

error

The degree of Dividend needs to be at least 1.
For example: Dividend = 3x+5 or Dividend = 5x3 - 2x + 11

Report an Error !

Script name : synthetic-division-calculator

Form values: 0 , 2 , 1 , 1 , 2 , 3 , 1 , 1 , 2 , 8 , 2 , 5 , div , g , Divide 8 by 1 using synthetic division

Comment (optional)

Share Result

You can copy and paste the link wherever you need it.

Synthetic Division Calculator
shows steps on how to divide polynomials
help ↓↓ examples ↓↓ tutorial ↓↓
Divide dividend by divisor using synthetic division (default)
Find the remainder when dividend is divided by divisor
Determine whether divisor is a factor of dividend
Hide steps
working...
EXAMPLES
example 1:ex 1:
Divide $3x^3-5x+2$ by $x-4$ using synthetic division.
example 2:ex 2:
Find the remainder when $5x^4-2x^3-4x^2 + 2$ is divided by $x-2$.
example 3:ex 3:
Divide $-x^5-5x^3-x^2+2$ by $3x-1$.
example 4:ex 4:
Determine whether $x-1$ is a factor of $3x^3-5x^2-x+3$.
Find more worked examples in popular problems.
Search our database of more than 200 calculators
TUTORIAL

Synthetic division

Synthetic division is, by far, the easiest and fastest method to divide a polynomial by $ \color{blue}{x - c} $, where $ \color{blue}{c} $ is a constant. This method only works when we divide by a linear factor. Let's look at two examples to learn how we can apply this method.

Example 1 : Divide $ x^2 +3x - 2 $ by $x - 2$.

Step 1: Write down the coefficients of $ 2x^2 +3x +4 $ into the division table.

$$ \begin{array}{c|rrr} \color{blue}{\square} &2&3&4\\ & & & \\ \hline & & & \end{array} $$

Step 2: Change the sign of a number in the divisor and write it on the left side. In this case, the divisor is $x - 2$ so we have to change $\, -2 \,$ to $\, \color{blue}{2} $.

$$ \begin{array}{c|rrr} \color{blue}{2} &2&3&4\\ & & & \\ \hline & & & \end{array} $$

Step 3: Carry down the leading coefficient

$$ \begin{array}{c|rrr} 2 &\color{orangered}{2}&3&4\\ & & & \\ \hline &\color{orangered}{2}& & \end{array} $$

Step 4: Multiply carry-down by left term and put the result into the next column

$$ \begin{array}{c|rrr} \color{blue}{2} &2&3&4\\ & &\color{blue}{4} & \\ \hline &\color{blue}{2}& & \end{array} $$

Step 5: Add the last column

$$ \begin{array}{c|rrr} 2 &2&\color{orangered}{3}&4\\ & &\color{orangered}{4}& \\ \hline &2&\color{orangered}{7}& \end{array} $$

Step 6: Multiply previous value by left term and put the result into the next column

$$ \begin{array}{c|rrr} \color{blue}{2} &2&3&4\\ & &4&\color{blue}{14} \\ \hline &2&\color{blue}{7}& \end{array} $$

Step 6: Add the last column

$$ \begin{array}{c|rrr} \color{blue}{2} &2&3&\color{orangered}{4}\\ & &4&\color{orangered}{14} \\ \hline &2&7& \color{orangered}{18} \end{array} $$

Step 7: Read the result from the synthetic table.

$$ \begin{array}{c|rrr} 2&2&3&4\\ & &4&14\\ \hline &\color{blue}{2}&\color{blue}{7}& \color{orangered}{18} \end{array} $$

The quotient is $ \color{blue}{2x + 7}$ and the remainder is $\color{orangered}{18}$.

Starting polynomial $ x^2 +3x - 2 $ can be written as:

$$ x^2 +3x - 2 = \color{blue}{2x + 7} + \dfrac{ \color{orangered}{18} }{ x - 2 } $$

Example 2 : Divide $ x^4 + 10x + 1 $ by $x + 2$.

Step 1: Write down the coefficients of $ x^4 - 10x + 1 $ into the division table. (Note that this polynomial doesn't have $x^3$ and $x^2$ terms, so these coefficients must be zero)

$$ \begin{array}{c|rrr} \color{blue}{\square} &1&0&0& 10&1\\ & & & & &\\ \hline & & & & & \end{array} $$

Step 2: Change the sign of a number in the divisor and write it on the left side. In this case, the divisor is $x + 3$ so we have to change $\, +3 \,$ to $\, \color{blue}{-3} $.

$$ \begin{array}{c|rrr} \color{blue}{-3}&1&0&0&10&1\\ & & & & &\\ \hline & & & & & \end{array} $$

Step 3: Carry down the leading coefficient

$$ \begin{array}{c|rrr} \color{blue}{-3}&\color{orangered}{1}&0&0&10&1\\ & & & & &\\ \hline &\color{orangered}{1}& & & & \end{array} $$

Multiply carry-down by left term and put the result into the next column

$$ \begin{array}{c|rrr} \color{blue}{-3}&1&0&0&10&1\\ & &\color{blue}{-3}& & &\\ \hline &\color{blue}{1}& & & & \end{array} $$

ADD the last column

$$ \begin{array}{c|rrr} -3 &1&\color{orangered}{0}&0&10&1\\ & &\color{orangered}{-3}& & &\\ \hline &1&-3 & & & \end{array} $$

Multiply last value by left term and put the result into the next column

$$ \begin{array}{c|rrr} \color{blue}{-3} &1&0&0&10&1\\ & &-3&\color{blue}{9}& &\\ \hline &1&\color{blue}{-3} & & & \end{array} $$

ADD the last column

$$ \begin{array}{c|rrr} -3 &1& 0&\color{orangered}{0}&10&1\\ & &-3&\color{orangered}{9}& &\\ \hline &1&-3&\color{orangered}{9}& & \end{array} $$

Multiply last value by left term and put the result into the next column

$$ \begin{array}{c|rrr} \color{blue}{-3} &1& 0&0&10&1\\ & &-3&9& \color{blue}{-27}&\\ \hline &1&-3&\color{blue}{9}& & \end{array} $$

ADD the last column

$$ \begin{array}{c|rrr} -3 &1&0&0&10&\color{orangered}{1}\\ & &-3& 9 & \color{orangered}{-27}&\\ \hline &1&-3&9& \color{orangered}{-17}& \end{array} $$

Multiply last value by left term and put the result into the next column

$$ \begin{array}{c|rrr} \color{blue}{-3} &1&0&0&10&1\\ & &-3& 9 &-27&\color{blue}{51}\\ \hline &1&-3&9&\color{blue}{-17}& \end{array} $$

ADD the last column

$$ \begin{array}{c|rrr} -3 &1&0&0&10&\color{orangered}{1}\\ & &-3& 9 &-27&\color{orangered}{51}\\ \hline &1&-3&9&-17&\color{orangered}{52} \end{array} $$

Step 7: Read the result from the synthetic table.

$$ \begin{array}{c|rrr} -3 &1&0&0&10&\color{orangered}{1}\\ & &-3& 9 &-27&\color{orangered}{51}\\ \hline &\color{blue}{1}&\color{blue}{-3}&\color{blue}{9}&\color{blue}{-17}&\color{orangered}{52} \end{array} $$

The quotient is $ \color{blue}{x^3 - 3x^2 + 9x - 17}$ and the remainder is $\color{orangered}{52}$.

Starting polynomial $ x^4 + 10x + 1 $ can be written as:

$$ x^4 + 10x + 1 = \color{blue}{x^3 - 3x^2 + 9x - 17} + \dfrac{ \color{orangered}{52} }{ x + 3 } $$
Search our database of more than 200 calculators

Was this calculator helpful?

Yes No
438 281 787 solved problems