Math Formulas: Triangles in two dimensions

Area of the triangle

The area of the triangle formed by the three lines:

$$
\begin{aligned}
& A_{1} x+B_{1} y+C_{1}=0 \\
& A_{2} x+B_{2} y+C_{2}=0 \\
& A_{3} x+B_{3} y+C_{3}=0
\end{aligned}
$$

is given by
2.

$$
A=\frac{\left|\begin{array}{lll}
A_{1} & B_{1} & C_{1} \\
A_{2} & B_{2} & C_{2} \\
A_{3} & B_{3} & C_{3}
\end{array}\right|}{2 \cdot\left|\begin{array}{ll}
A_{1} & B_{1} \\
A_{2} & B_{2}
\end{array}\right| \cdot\left|\begin{array}{ll}
A_{2} & B_{2} \\
A_{3} & B_{3}
\end{array}\right| \cdot\left|\begin{array}{ll}
A_{3} & B_{3} \\
A_{1} & B_{1}
\end{array}\right|}
$$

The area of a triangle whose vertices are $P_{1}\left(x_{1}, y_{1}\right), P_{2}\left(x_{2}, y_{2}\right)$ and $P_{3}\left(x_{3}, y_{3}\right)$ is given by :
3.

$$
A=\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|
$$

and by:
4.

$$
A=\frac{1}{2}\left|\begin{array}{ll}
x_{2}-x_{1} & y_{2}-y_{1} \\
x_{3}-x_{1} & y_{3}-y_{1}
\end{array}\right|
$$

Centroid

The centroid of a triangle whose vertices are $P_{1}\left(x_{1}, y_{1}\right), P_{2}\left(x_{2}, y_{2}\right)$ and $P_{3}\left(x_{3}, y_{3}\right)$ is given by:
5.

$$
(x, y)=\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)
$$

Incenter

The incenter of a triangle whose vertices are $P_{1}\left(x_{1}, y_{1}\right), P_{2}\left(x_{2}, y_{2}\right)$ and $P_{3}\left(x_{3}, y_{3}\right)$ is given by:
6.

$$
(x, y)=\left(\frac{a x_{1}+b x_{2}+c x_{3}}{3}, \frac{a y_{1}+b y_{2}+c y_{3}}{3}\right)
$$

where a is the length of $P_{2} P_{3}, b$ is the length of $P_{3} P_{1}$, and c is the length of $P_{1} P_{2}$.

Circumcenter

The circumcenter of a triangle whose vertices are $P_{1}\left(x_{1}, y_{1}\right), P_{2}\left(x_{2}, y_{2}\right)$ and $P_{3}\left(x_{3}, y_{3}\right)$ is given by:
7.

$$
(x, y)=\left(\frac{\left(\left.\begin{array}{lll}
x_{1}^{2}+y_{1}^{2} & y_{1} & 1 \\
x_{2}^{2}+y_{2}^{2} & y_{2} & 1 \\
x_{3}^{2}+y_{3}^{2} & y_{3} & 1
\end{array} \right\rvert\,\right.}{2 \cdot\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|}, \frac{\left|\begin{array}{lll}
x_{1} & x_{1}^{2}+y_{1}^{2} & 1 \\
x_{2} & x_{2}^{2}+y_{2}^{2} & 1 \\
x_{3} & x_{3}^{2}+y_{3}^{2} & 1
\end{array}\right|}{2 \cdot\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|}\right)
$$

Orthocenter

The orthocenter of a triangle whose vertices are $P_{1}\left(x_{1}, y_{1}\right), P_{2}\left(x_{2}, y_{2}\right)$ and $P_{3}\left(x_{3}, y_{3}\right)$ is given by:
8.

$$
(x, y)=\left(\frac{\left|\begin{array}{lll}
y_{1} & x_{2} x_{3}+y_{1}^{2} & 1 \\
y_{2} & x_{3} x_{1}+y_{2}^{2} & 1 \\
y_{3} & x_{1} x_{2}+y_{3}^{2} & 1
\end{array}\right|}{2 \cdot\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|}, \frac{\left|\begin{array}{lll}
x_{1}^{2}+y_{2} y_{3} & x_{1} & 1 \\
x_{2}^{2}+y_{3} y_{1} & x_{2} & 1 \\
x_{3}^{2}+y_{1} y_{2} & x_{3} & 1
\end{array}\right|}{2 \cdot\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|}\right)
$$

