## Math Formulas: Circle

## Equation of a circle

In an $x-y$ coordinate system, the circle with center $(a, b)$ and radius $r$ is the set of all points $(x, y)$ such that:
1.

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

Circle centered at the origin:
2.

$$
x^{2}+y^{2}=r^{2}
$$

Parametric equations
3.

$$
\begin{aligned}
& x=a+r \cos t \\
& y=b+r \sin t
\end{aligned}
$$

where $t$ is a parametric variable.
In polar coordinates the equation of a circle is:
4.

$$
r^{2}-2 \cdot r \cdot r_{0} \cdot \cos (\Theta-\phi)+r_{0}^{2}=a^{2}
$$

## Area of a circle

5. 

$$
A=r^{2} \pi
$$

## Circumference of a circle

6. 

$$
C=\pi \cdot d=2 \cdot \pi \cdot r
$$

## Theorems:

(Chord theorem) The chord theorem states that if two chords, $C D$ and $E F$, intersect at $G$, then:
7.

$$
C D \cdot D G=E G \cdot F G
$$

(Tangent-secant theorem) If a tangent from an external point $D$ meets the circle at $C$ and a secant from the external point $D$ meets the circle at $G$ and $E$ respectively, then
8.

$$
D C^{2}=D G \cdot D E
$$

(Secant - secant theorem) If two secants, $D G$ and $D E$, also cut the circle at $H$ and $F$ respectively, then:
9.

$$
D H \cdot D G=D F \cdot D E
$$

(Tangent chord property) The angle between a tangent and chord is equal to the subtended angle on the opposite side of the chord.

